Defining endogenous TACC3-chTOG-clathrin-GTSE1 interactions at the mitotic spindle using induced relocalization
Citation
Ryan, E.L., Shelford, J., Massam-Wu, T., Bayliss, R., and Royle, S.J. (2021). Defining endogenous TACC3-chTOG-clathrin-GTSE1 interactions at the mitotic spindle using induced relocalization. J Cell Sci 134.
Abstract
A multiprotein complex containing TACC3, clathrin and other proteins has been implicated in mitotic spindle stability. To disrupt this complex in an anti-cancer context, we need to understand its composition and how it interacts with microtubules. Induced relocalization of proteins in cells is a powerful way to analyze protein-protein interactions and, additionally, monitor where and when these interactions occur. We used CRISPR/Cas9 gene editing to add tandem FKBP-GFP tags to each complex member. The relocalization of endogenous tagged protein from the mitotic spindle to mitochondria and assessment of the effect on other proteins allowed us to establish that TACC3 and clathrin are core complex members and that chTOG (also known as CKAP5) and GTSE1 are ancillary to the complex, binding respectively to TACC3 and clathrin, but not each other. We also show that PIK3C2A, a clathrin-binding protein that was proposed to stabilize the TACC3-chTOG-clathrin-GTSE1 complex during mitosis, is not a member of the complex. This work establishes that targeting the TACC3-clathrin interface or their microtubule-binding sites are the two strategies most likely to disrupt spindle stability mediated by this multiprotein complex.